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Single-Source Shortest Paths

● In a shortest-paths problem, we are given a weighted, directed 
graph G = (V, E).

● The weight w(p) of path p = (V0, V1…. Vk) is the sum of the 
weights of its constituent edges:
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Single-Source Shortest Paths

● We define the shortest-path weight δ(u, v)from u to v by
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Single-Source Shortest Paths: Variants

✔ The algorithm for the single-source problem can solve 
many other problems, including the following variants.

Single-destination shortest-paths problem: Find a shortest 
path to a given destination vertex t from each vertex v. 

Single-pair shortest-path problem: Find a shortest path 
from u to v for given vertices u and v. If we solve the single-
source problem with source vertex u, we solve this problem 
also. 

All-pairs shortest-paths problem: Find a shortest path from 
u to v for every pair of vertices u and v. 
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Relaxation

✔ The algorithms in this chapter use the technique of relaxation. 

✔ For each vertex v  V∈  , we maintain an attribute v.d, which is an upper 
bound on the weight of a shortest path from source s to v. 

✔ We call v.d a shortest-path estimate.

✔ We initialize the shortest-path estimates and predecessors by the following 
Θ(V) time procedure.
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Relaxation

After initialization, we have v.π = NIL for all v ∈ V , s.d = 0, 
and v.d = ∞ for v ∈ V - {s}.



09/04/22 Created by Pukar Karki, IOE 7

Relaxation
✔ The process of relaxing an edge (u, v) consists of testing 

whether we can improve the shortest path to v found so far by 
going through u and, if so, updating v.d and v.π.
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Relaxation
✔ The following code performs a relaxation step on edge 

(u, v) in O(1) time:
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The Bellman-Ford algorithm
✔ The Bellman-Ford algorithm solves the single-source shortest-

paths problem in the general case in which edge weights may 
be negative.

✔ Given a weighted, directed graph G = (V, E) with source s , the 
Bellman-Ford algorithm returns a boolean value indicating 
whether or not there is a negative-weight cycle that is reachable 
from the source.

✔ If there is such a cycle, the algorithm indicates that no solution 
exists. 

✔ If there is no such cycle, the algorithm produces the shortest 
paths and their weights.
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The Bellman-Ford algorithm
✔ The algorithm returns TRUE if and only if the graph contains no 

negative-weight cycles that are reachable from the source.
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The Bellman-Ford algorithm
✔ The algorithm returns TRUE if and only if the graph contains no 

negative-weight cycles that are reachable from the source.

✔ The Bellman-Ford algorithm 
runs in time O(V.E), since the 
initialization in line 1 takes Θ(V) 
time, each of the |V| - 1 passes 
over the edges in lines 2–4 
takes Θ(E) time, and the for 
loop of lines 5-7 takes O(E) 
time.
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The Bellman-Ford algorithm
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The Bellman-Ford algorithm
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The Bellman-Ford algorithm
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The Bellman-Ford algorithm
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The Bellman-Ford algorithm
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Dijkstra’s algorithm
✔ Dijkstra’s algorithm solves the single-source shortest-paths problem 

on a weighted, directed graph G = (V, E) for the case in which all 
edge weights are non-negative.

✔ In this section, therefore, we assume that w(u, v) ≥ 0 for each edge 
(u, v) ∈ E. 

✔ As we shall see, with a good implementation, the running time of 
Dijkstra’s algorithm is lower than that of the Bellman-Ford algorithm.
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Dijkstra’s algorithm
✔ Dijkstra’s algorithm maintains a set S of vertices whose final shortest-

path weights from the source s have already been determined.

✔ The algorithm repeatedly selects the vertex u  ∈ V - S with the 
minimum shortest-path estimate, adds u to S, and relaxes all edges 
leaving u.

✔ In the following implementation, we use a min-priority queue Q of 
vertices, keyed by their d values.
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Dijkstra’s algorithm



09/04/22 Created by Pukar Karki, IOE 20

Dijkstra’s algorithm
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Dijkstra’s algorithm
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Dijkstra’s algorithm
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Dijkstra’s algorithm



09/04/22 Created by Pukar Karki, IOE 24

Dijkstra’s algorithm
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Dijkstra’s algorithm



09/04/22 Created by Pukar Karki, IOE 26

Dijkstra’s algorithm

✔ It maintains the min-priority queue Q by 
calling three priority-queue operations: 
INSERT (implicit in line 3), EXTRACT-MIN 
(line 5), and DECREASE-KEY (implicit in 
RELAX, which is called in line 8).

✔ The algorithm calls both INSERT and 
EXTRACT-MIN once per vertex.

✔ Because each vertex u ∈ V is added to set S 
exactly once, each edge in the adjacency list 
Adj[u] is examined in the for loop of lines 7–8 
exactly once during the course of the 
algorithm.
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Dijkstra’s algorithm

✔ Since the total number of edges in all the 
adjacency lists is |E|, this for loop iterates 
a total of |E| times, and thus the 
algorithm calls DECREASE-KEY at most 
|E| times overall.
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Dijkstra’s algorithm

✔ The running time of Dijkstra’s algorithm 
depends on how we implement the min-
priority queue. 

✔ Consider first the case in which we 
maintain the min-priority queue by taking 
advantage of the vertices being 
numbered 1 to |V|.

✔ We simply store v.d in the vth entry of an 
array.

✔ Each INSERT and DECREASE-KEY 
operation takes O(1) time, and each 
EXTRACT-MIN operation takes O(V) 
time (since we have to search through 
the entire array), for a total time of 

O(V2 + E) =  O(V2).
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Dijkstra’s algorithm
✔ The running time of Dijkstra’s algorithm 

depends on how we implement the min-
priority queue. 

✔ If the graph is sufficiently sparse, we can
improve the algorithm by implementing the 
min-priority queue with a binary min-heap.

✔ Each EXTRACT-MIN operation then takes 
time O(lg V).

✔ As before, there are |V| such operations.

✔ The time to build the binary min-heap is 
O(V).

✔ Each DECREASE-KEY operation takes 
time O(lg V), and there are still at most    |E| 
such operations. 

✔ The total running time is therefore         
O((V + E) lg V), which is O(E lg V) if all 
vertices are reachable from the source. 
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All-Pairs Shortest Paths
✔ Consider the problem of finding shortest paths between all pairs of 

vertices in a graph. 

✔ We are given a weighted directed graph G = (V, E).

✔ We wish to find, for every pair of vertices u, v   ∈ V , a shortest (least-
weight) path from u to v, where the weight of a path is the sum of the 
weights of its constituent edges. 
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All-Pairs Shortest Paths
✔ We can solve an all-pairs shortest-paths problem by running a single-

source shortest-paths algorithm |V| times, once for each vertex as the 
source.

✔ If all edge weights are non-negative, we can use Dijkstra’s algorithm.

✔ If we use the linear-array implementation of the min-priority queue, 
the running time is

O(V3 + VE) = O(V3) 
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All-Pairs Shortest Paths
✔ The binary min-heap implementation of the min-priority queue yields 

a running time of O(VE lg V), which is an improvement if the graph is 
sparse. 

✔ If the graph has negative-weight edges, we cannot use Dijkstra’s 
algorithm. Instead, we must run the slower Bellman-Ford algorithm 
once from each vertex.

✔ The resulting running time is O(V2E), which on a dense graph is 
O(V4).
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All-Pairs Shortest Paths
✔ Unlike the single-source algorithms, which assume an adjacency-list 

representation of the graph, most of the algorithms in this section use 
an adjacency-matrix representation. 

✔ For convenience, we assume that the vertices are numbered 1, 2, …. 
|V|, so that the input is an n x n matrix W representing the edge 
weights of an n-vertex directed graph G = (V, E).

✔ That is, W =  (wij), where
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All-Pairs Shortest Paths
✔ We allow negative-weight edges, but we assume for the time being 

that the input graph contains no negative-weight cycles.

✔ The tabular output of the all-pairs shortest-paths algorithms presented 
in this chapter is an n x n matrix D = (dij), where entry dij contains the 
weight of a shortest path from vertex i to vertex j 
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The Floyd-Warshall Algorithm
✔ Floyd-Warshall algorithm, runs in Θ(V3) time and uses the notion of 

dynamic programming.

✔ This algorithm can be used to compute all pair shortest path.

✔ This algorithm works even if some of the edges have negative 
weights.
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The Floyd-Warshall Algorithm

✔ Suppose, G = (V, E) is a weighted graph.

✔ Let W be the adjacency matrix of G.

✔ Let Dk be a n x n matrix such that Dk(i, j) contains the weight of 
the shortest path from vertex i to vertex j using vertices 1,2, … k 
as intermediate vertices.

✔ We compute Dk as follows

Dk = Dk-1 (i, j) when k is not an intermediate vertex.

Dk = Dk-1(i, k) + Dk-1(k, j) when k is an intermediate vertex

✔ The matrix Dn gives us all pair shortest path.

Dk  = min[Dk-1 (i, j), Dk-1(i, k) + Dk-1(k, j)]
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The Floyd-Warshall Algorithm

Q)Find the shortest path from source vertex to every other vertices.

1
2

3

6

4

2

11
3
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The Floyd-Warshall Algorithm

✔ The adjacency matrix can be computed as

1
2

3

6

4

2

11
3

W/Do 1 2 3

1 0 4 11

2 6 0 2

3 3 inf 0
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The Floyd-Warshall Algorithm

✔ When vertex 1 is an intermediate vertex, D1 can be computed as

D1(1, 1) = 0

D1(1, 2) = min[D0 (1, 2), D0(1, 1) + D0(1, 2)] = min[4, 0+4] = 4

D1(1, 3) = min[D0 (1, 3), D0(1, 1) + D0(1, 3)] = min[11, 0+11] = 11

D1(2, 1) = min[D0 (2, 1), D0(2, 1) + D0(1, 1)] = min[6, 6+0] = 6

D1(2, 2) = min[D0 (2, 2), D0(2, 1) + D0(1, 2)] = min[0, 6 +10] = 0

D1(2, 3) = min[D0 (2, 3), D0(2, 1) + D0(1, 3)] = min[2, 6+11] = 2

D1(3, 1) = min[D0 (3, 1), D0(3, 1) + D0(1, 1)] = min[3, 3 + 0] = 3

D1(3, 2) = min[D0 (3, 2), D0(3, 1) + D0(1, 2)] = min[inf, 3+4] = 7

D1(3, 3) = min[D0 (3, 3), D0(3, 1) + D0(1, 3)] = min[0, 3+11] = 0 

1
2

3

6

4

2

11
3

W/Do 1 2 3

1 0 4 11

2 6 0 2

3 3 inf 0
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The Floyd-Warshall Algorithm

✔ When vertex 2 is an intermediate vertex, D2 can be computed as

D2(1, 1) = 0

D2(1, 2) = min[D1 (1, 2), D1(1, 2) + D1(2, 2)] = min[4, 4+0] = 4

D2(1, 3) = min[D1 (1, 3), D1(1, 2) + D1(2, 3)] = min[11, 4+2] = 6

D2(2, 1) =  6

D2(2, 2) = 0

D2(2, 3) = 2

D2(3, 1) = min[D1 (3, 1), D1(3, 2) + D1(2, 1)] = min[3, 7 + 6] = 3

D2(3, 2) = 7

D2(3, 3) = 0 

1
2

3

6

4

2

11
3

D1 1 2 3

1 0 4 11

2 6 0 2

3 3 7 0



09/04/22 Created by Pukar Karki, IOE 41

The Floyd-Warshall Algorithm

✔ When vertex 3 is an intermediate vertex, D3 can be computed as

D3(1, 1) = 0

D3(1, 2) = min[D2 (1, 2), D2(1, 3) + D2(3, 2)] = min[4, 6+7] = 4

D3(1, 3) =  6

D3(2, 1) =  min[D2 (2, 1), D2(2, 3) + D2(3, 1)] = min[6, 2 + 3] = 5

D3(2, 2) = 0

D3(2, 3) = 2

D3(3, 1) = 3

D3(3, 2) = 7

D3(3, 3) = 0 

1
2

3

6

4

2

11
3

D2 1 2 3

1 0 4 6

2 6 0 2

3 3 7 0



09/04/22 Created by Pukar Karki, IOE 42

The Floyd-Warshall Algorithm

1
2

3

6

4

2

11
3

D3 1 2 3

1 0 4 6

2 5 0 2

3 3 7 0
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The Floyd-Warshall Algorithm

✔ Let W be a matrix that contains weight of each edges of G, n be 
the number of nodes.
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The Floyd-Warshall Algorithm
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The Floyd-Warshall Algorithm

✔ The running time of the Floyd-Warshall algorithm is determined by the triply 
nested for loops of lines 3–7. Because each execution of line 7 takes O(1) 
time, the algorithm runs in time Θ(n3).

✔ The code is tight, with no elaborate data structures, and so the constant 
hidden in the notation is small.

✔ Thus, the Floyd-Warshall algorithm is quite practical for even moderate-
sized input graphs.
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Flow Networks

✔ Imagine a material coursing through a system from a source, where 
the material is produced, to a sink, where it is consumed.

✔ The source produces the material at some steady rate, and the sink 
consumes the material at the same rate. 

✔ The “flow” of the material at any point in the system is intuitively the 
rate at which the material moves.
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Flow Networks

✔ Flow networks can model many problems, including liquids flowing 
through pipes, parts through assembly lines, current through electrical 
networks, and information through communication networks.
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Flow Networks

✔ A flow network G = (V, E) is a directed graph in which each 
edge (u, v) ∈ E has a non-negative capacity c(u, v) ≥ 0.

✔ We further require that if E contains an edge (u,v), then there is 
no edge (v, u) in the reverse direction.
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Flow Networks

✔ We distinguish two vertices in a flow network: a source s and a 
sink t.
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Flow Networks

✔ Let G = (V, E) be a flow network with a capacity function c. 

✔ Let s be the source of the network, and let t be the sink. 

✔ A flow in G is a real-valued function f : V x V→R that satisfies 
the following two properties:
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Flow Networks
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Flow Networks
✔ The capacity constraint simply says that the flow from one vertex to 

another must be non-negative and must not exceed the given 
capacity.

✔ The flow-conservation property says that the total flow into a vertex 
other than the source or sink must equal the total flow out of that 
vertex—informally, “flow in equals flow out.”
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Maximum Flow

✔ In the maximum-flow problem, we are given a flow network 
G with source s and sink t, and we wish to find a flow of 
maximum value.
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The Ford-Fulkerson method

✔ Ford-Fulkerson method is used  for solving the maximum-flow 
problem.

✔ We call it a “method” rather than an “algorithm” because it 
encompasses several implementations with differing running 
times.

✔ The Ford-Fulkerson method depends on three important ideas 
that transcend the method and are relevant to many flow 
algorithms and problems:

- residual networks,

- augmenting paths, and 

- cuts.
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The Ford-Fulkerson method
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The Ford-Fulkerson method
Residual Networks

✔ Intuitively, given a flow network G and a flow f , the residual network 
Gf consists of edges with capacities that represent how we can 
change the flow on edges of G.

✔ An edge of the flow network can admit an amount of additional flow 
equal to the edge’s capacity minus the flow on that edge.

✔ If that value is positive, we place that edge into Gf with a “residual 
capacity” of
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The Ford-Fulkerson method
Residual Networks

✔ As an algorithm manipulates the flow, with the goal of increasing the 
total flow, it might need to decrease the flow on a particular edge.

✔ In order to represent a possible decrease of a positive flow f(u, v)  on 
an edge in G, we place an edge (v, u) into Gf with residual capacity

cf(v, u) = f (u, v)  that is, an edge that can admit

             flow in the opposite direction to
   (u, v), at most canceling out 

    the flow on (u, v).
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The Ford-Fulkerson method
Residual Networks

✔ Formally, suppose that we have a flow network G = (V, E) with source 
s and sink t.

✔ Let f be a flow in G, and consider a pair of vertices u, v ∈ V.

✔ We define the residual capacity cf(u, v) by
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The Ford-Fulkerson method
Residual Networks

✔ Given a flow network G = (V, E) and a flow f , the residual network of 
G induced by f is Gf = (V, Ef), where

✔ That is, as promised above, each edge of the residual network, or 
residual edge, can admit a flow that is greater than 0. 
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The Ford-Fulkerson method
Residual Networks
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The Ford-Fulkerson method
Residual Networks
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The Ford-Fulkerson method
Residual Networks
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The Ford-Fulkerson method
Residual Networks

✔ A flow in a residual network provides a roadmap for adding flow 
to the original flow network.

✔ If f is a flow in G and f’ is a flow in the corresponding residual 
network Gf, we define f↑f’, the augmentation of flow f by f’, to be 
a function from V x V to R, defined by
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The Ford-Fulkerson method
Augmenting Paths

✔ Given a flow network G = (V, E) and a flow f , an augmenting 
path p is a simple path from s to t in the residual network Gf .

✔ By the definition of the residual network, we may increase the 
flow on an edge (u, v) of an augmenting path by up to cf(u, v) 
without violating the capacity constraint on whichever of (u, v) 
and (v, u) is in the original flow network G.
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The Ford-Fulkerson method
Augmenting Paths

✔ We call the maximum amount by which we can increase the 
flow on each edge in an augmenting path p the residual 
capacity of p, given by
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The Ford-Fulkerson method
Cuts of flow networks

✔ The Ford-Fulkerson method repeatedly augments the flow 
along augmenting paths until it has found a maximum flow.

✔ The max-flow min-cut theorem, tells us that a flow is maximum 
if and only if its residual network contains no augmenting path.
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The Ford-Fulkerson method
Cuts of flow networks

✔ A cut (S, T) of flow network G = (V, E) is a partition of V into S 
and T = V - S such that s ∈ S and t ∈ T.

● A cut (S, T)   where S = {s, v1, v2} and T = {v3,  v4,  t}.
● The capacity is c(S, T)  D= 26
● The net flow across (S, T)  is f (S, T) = 19

● The capacity of the cut (S, T)  is

● The net flow f (S, T) across the 
cut (S, T)  is defined to be
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The Ford-Fulkerson method
Cuts of flow networks

✔ A minimum cut of a network is a cut whose capacity is minimum 
over all cuts of the network.
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The Ford-Fulkerson method
Max-flow min-cut theorem

✔ If f is a flow in a flow network G = (V, E) with source s and sink 
t, then the following conditions are equivalent:

1. f is a maximum flow in G.

2. The residual network Gf contains no augmenting paths.

3. |f| =  c(S, T)  for some cut (S, T) of G.
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The Ford-Fulkerson method
The basic Ford-Fulkerson algorithm
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The Ford-Fulkerson method
The basic Ford-Fulkerson algorithm

✔ The running time of FORD-FULKERSON depends on how we find the 
augmenting path p in line 3. 

✔ If we choose it poorly, the algorithm might not even terminate: the value 
of the flow will increase with successive augmentations, but it need not 
even converge to the maximum flow value.
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The Ford-Fulkerson method
The basic Ford-Fulkerson algorithm

✔ If we find the augmenting path by using a breadth-first search , 
however, the algorithm runs in polynomial time.
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The Ford-Fulkerson method
The basic Ford-Fulkerson algorithm



09/04/22 Created by Pukar Karki, IOE 74

The Ford-Fulkerson method
The basic Ford-Fulkerson algorithm
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The Ford-Fulkerson method
The basic Ford-Fulkerson algorithm
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The Ford-Fulkerson method
The basic Ford-Fulkerson algorithm
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The Ford-Fulkerson method
The basic Ford-Fulkerson algorithm



09/04/22 Created by Pukar Karki, IOE 78

The Ford-Fulkerson method
The basic Ford-Fulkerson algorithm
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The Ford-Fulkerson method
The basic Ford-Fulkerson algorithm
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The Ford-Fulkerson method
The basic Ford-Fulkerson algorithm
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The Ford-Fulkerson method
The basic Ford-Fulkerson algorithm
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The Ford-Fulkerson method
The basic Ford-Fulkerson algorithm
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The Ford-Fulkerson method
The basic Ford-Fulkerson algorithm

The value of the maximum flow found is 23.
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Review Questions

1) Run the Bellman-Ford algorithm on the directed graph in the 
given figure using vertex 1 as the source. Show the d and π 

values after each pass.
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Review Questions

2) Give a simple example of a directed graph with negative-weight 
edges for which Dijkstra’s algorithm produces incorrect answers.

3) Professor Ram has written a program that he claims implements 
Dijkstra’s algorithm. The program produces v.d and v.π for each 
vertex v ∈ V . Give an O(V + E) time algorithm to check the output 
of the professor’s program. It should determine whether the d and 
π attributes match those of some shortest-paths tree. You may 
assume that all edge weights are non-negative.
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Review Questions

4. Run the Floyd-Warshall algorithm on the weighted, directed graph in 
the given figure. Show the matrix D(k) that results for each iteration of the 
outer loop.
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Review Questions

5. Run the Ford-Fulkerson algorithm to compute the maximum flow 
in the following network. Also, comment on the run time of this algorithm.
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