
4. Graph Algorithms

Pukar Karki
Assistant Professor

09/04/22 Created by Pukar Karki, IOE 2

Single-Source Shortest Paths

● In a shortest-paths problem, we are given a weighted, directed
graph G = (V, E).

● The weight w(p) of path p = (V0, V1…. Vk) is the sum of the
weights of its constituent edges:

09/04/22 Created by Pukar Karki, IOE 3

Single-Source Shortest Paths

● We define the shortest-path weight δ(u, v)from u to v by

09/04/22 Created by Pukar Karki, IOE 4

Single-Source Shortest Paths: Variants

✔ The algorithm for the single-source problem can solve
many other problems, including the following variants.

Single-destination shortest-paths problem: Find a shortest
path to a given destination vertex t from each vertex v.

Single-pair shortest-path problem: Find a shortest path
from u to v for given vertices u and v. If we solve the single-
source problem with source vertex u, we solve this problem
also.

All-pairs shortest-paths problem: Find a shortest path from
u to v for every pair of vertices u and v.

09/04/22 Created by Pukar Karki, IOE 5

Relaxation

✔ The algorithms in this chapter use the technique of relaxation.

✔ For each vertex v V∈ , we maintain an attribute v.d, which is an upper
bound on the weight of a shortest path from source s to v.

✔ We call v.d a shortest-path estimate.

✔ We initialize the shortest-path estimates and predecessors by the following
Θ(V) time procedure.

09/04/22 Created by Pukar Karki, IOE 6

Relaxation

After initialization, we have v.π = NIL for all v ∈ V , s.d = 0,
and v.d = ∞ for v ∈ V - {s}.

09/04/22 Created by Pukar Karki, IOE 7

Relaxation
✔ The process of relaxing an edge (u, v) consists of testing

whether we can improve the shortest path to v found so far by
going through u and, if so, updating v.d and v.π.

09/04/22 Created by Pukar Karki, IOE 8

Relaxation
✔ The following code performs a relaxation step on edge

(u, v) in O(1) time:

09/04/22 Created by Pukar Karki, IOE 9

The Bellman-Ford algorithm
✔ The Bellman-Ford algorithm solves the single-source shortest-

paths problem in the general case in which edge weights may
be negative.

✔ Given a weighted, directed graph G = (V, E) with source s , the
Bellman-Ford algorithm returns a boolean value indicating
whether or not there is a negative-weight cycle that is reachable
from the source.

✔ If there is such a cycle, the algorithm indicates that no solution
exists.

✔ If there is no such cycle, the algorithm produces the shortest
paths and their weights.

09/04/22 Created by Pukar Karki, IOE 10

The Bellman-Ford algorithm
✔ The algorithm returns TRUE if and only if the graph contains no

negative-weight cycles that are reachable from the source.

09/04/22 Created by Pukar Karki, IOE 11

The Bellman-Ford algorithm
✔ The algorithm returns TRUE if and only if the graph contains no

negative-weight cycles that are reachable from the source.

✔ The Bellman-Ford algorithm
runs in time O(V.E), since the
initialization in line 1 takes Θ(V)
time, each of the |V| - 1 passes
over the edges in lines 2–4
takes Θ(E) time, and the for
loop of lines 5-7 takes O(E)
time.

09/04/22 Created by Pukar Karki, IOE 12

The Bellman-Ford algorithm

09/04/22 Created by Pukar Karki, IOE 13

The Bellman-Ford algorithm

09/04/22 Created by Pukar Karki, IOE 14

The Bellman-Ford algorithm

09/04/22 Created by Pukar Karki, IOE 15

The Bellman-Ford algorithm

09/04/22 Created by Pukar Karki, IOE 16

The Bellman-Ford algorithm

09/04/22 Created by Pukar Karki, IOE 17

Dijkstra’s algorithm
✔ Dijkstra’s algorithm solves the single-source shortest-paths problem

on a weighted, directed graph G = (V, E) for the case in which all
edge weights are non-negative.

✔ In this section, therefore, we assume that w(u, v) ≥ 0 for each edge
(u, v) ∈ E.

✔ As we shall see, with a good implementation, the running time of
Dijkstra’s algorithm is lower than that of the Bellman-Ford algorithm.

09/04/22 Created by Pukar Karki, IOE 18

Dijkstra’s algorithm
✔ Dijkstra’s algorithm maintains a set S of vertices whose final shortest-

path weights from the source s have already been determined.

✔ The algorithm repeatedly selects the vertex u ∈ V - S with the
minimum shortest-path estimate, adds u to S, and relaxes all edges
leaving u.

✔ In the following implementation, we use a min-priority queue Q of
vertices, keyed by their d values.

09/04/22 Created by Pukar Karki, IOE 19

Dijkstra’s algorithm

09/04/22 Created by Pukar Karki, IOE 20

Dijkstra’s algorithm

09/04/22 Created by Pukar Karki, IOE 21

Dijkstra’s algorithm

09/04/22 Created by Pukar Karki, IOE 22

Dijkstra’s algorithm

09/04/22 Created by Pukar Karki, IOE 23

Dijkstra’s algorithm

09/04/22 Created by Pukar Karki, IOE 24

Dijkstra’s algorithm

09/04/22 Created by Pukar Karki, IOE 25

Dijkstra’s algorithm

09/04/22 Created by Pukar Karki, IOE 26

Dijkstra’s algorithm

✔ It maintains the min-priority queue Q by
calling three priority-queue operations:
INSERT (implicit in line 3), EXTRACT-MIN
(line 5), and DECREASE-KEY (implicit in
RELAX, which is called in line 8).

✔ The algorithm calls both INSERT and
EXTRACT-MIN once per vertex.

✔ Because each vertex u ∈ V is added to set S
exactly once, each edge in the adjacency list
Adj[u] is examined in the for loop of lines 7–8
exactly once during the course of the
algorithm.

09/04/22 Created by Pukar Karki, IOE 27

Dijkstra’s algorithm

✔ Since the total number of edges in all the
adjacency lists is |E|, this for loop iterates
a total of |E| times, and thus the
algorithm calls DECREASE-KEY at most
|E| times overall.

09/04/22 Created by Pukar Karki, IOE 28

Dijkstra’s algorithm

✔ The running time of Dijkstra’s algorithm
depends on how we implement the min-
priority queue.

✔ Consider first the case in which we
maintain the min-priority queue by taking
advantage of the vertices being
numbered 1 to |V|.

✔ We simply store v.d in the vth entry of an
array.

✔ Each INSERT and DECREASE-KEY
operation takes O(1) time, and each
EXTRACT-MIN operation takes O(V)
time (since we have to search through
the entire array), for a total time of

O(V2 + E) = O(V2).

09/04/22 Created by Pukar Karki, IOE 29

Dijkstra’s algorithm
✔ The running time of Dijkstra’s algorithm

depends on how we implement the min-
priority queue.

✔ If the graph is sufficiently sparse, we can
improve the algorithm by implementing the
min-priority queue with a binary min-heap.

✔ Each EXTRACT-MIN operation then takes
time O(lg V).

✔ As before, there are |V| such operations.

✔ The time to build the binary min-heap is
O(V).

✔ Each DECREASE-KEY operation takes
time O(lg V), and there are still at most |E|
such operations.

✔ The total running time is therefore
O((V + E) lg V), which is O(E lg V) if all
vertices are reachable from the source.

09/04/22 Created by Pukar Karki, IOE 30

All-Pairs Shortest Paths
✔ Consider the problem of finding shortest paths between all pairs of

vertices in a graph.

✔ We are given a weighted directed graph G = (V, E).

✔ We wish to find, for every pair of vertices u, v ∈ V , a shortest (least-
weight) path from u to v, where the weight of a path is the sum of the
weights of its constituent edges.

09/04/22 Created by Pukar Karki, IOE 31

All-Pairs Shortest Paths
✔ We can solve an all-pairs shortest-paths problem by running a single-

source shortest-paths algorithm |V| times, once for each vertex as the
source.

✔ If all edge weights are non-negative, we can use Dijkstra’s algorithm.

✔ If we use the linear-array implementation of the min-priority queue,
the running time is

O(V3 + VE) = O(V3)

09/04/22 Created by Pukar Karki, IOE 32

All-Pairs Shortest Paths
✔ The binary min-heap implementation of the min-priority queue yields

a running time of O(VE lg V), which is an improvement if the graph is
sparse.

✔ If the graph has negative-weight edges, we cannot use Dijkstra’s
algorithm. Instead, we must run the slower Bellman-Ford algorithm
once from each vertex.

✔ The resulting running time is O(V2E), which on a dense graph is
O(V4).

09/04/22 Created by Pukar Karki, IOE 33

All-Pairs Shortest Paths
✔ Unlike the single-source algorithms, which assume an adjacency-list

representation of the graph, most of the algorithms in this section use
an adjacency-matrix representation.

✔ For convenience, we assume that the vertices are numbered 1, 2, ….
|V|, so that the input is an n x n matrix W representing the edge
weights of an n-vertex directed graph G = (V, E).

✔ That is, W = (wij), where

09/04/22 Created by Pukar Karki, IOE 34

All-Pairs Shortest Paths
✔ We allow negative-weight edges, but we assume for the time being

that the input graph contains no negative-weight cycles.

✔ The tabular output of the all-pairs shortest-paths algorithms presented
in this chapter is an n x n matrix D = (dij), where entry dij contains the
weight of a shortest path from vertex i to vertex j

09/04/22 Created by Pukar Karki, IOE 35

The Floyd-Warshall Algorithm
✔ Floyd-Warshall algorithm, runs in Θ(V3) time and uses the notion of

dynamic programming.

✔ This algorithm can be used to compute all pair shortest path.

✔ This algorithm works even if some of the edges have negative
weights.

09/04/22 Created by Pukar Karki, IOE 36

The Floyd-Warshall Algorithm

✔ Suppose, G = (V, E) is a weighted graph.

✔ Let W be the adjacency matrix of G.

✔ Let Dk be a n x n matrix such that Dk(i, j) contains the weight of
the shortest path from vertex i to vertex j using vertices 1,2, … k
as intermediate vertices.

✔ We compute Dk as follows

Dk = Dk-1 (i, j) when k is not an intermediate vertex.

Dk = Dk-1(i, k) + Dk-1(k, j) when k is an intermediate vertex

✔ The matrix Dn gives us all pair shortest path.

Dk = min[Dk-1 (i, j), Dk-1(i, k) + Dk-1(k, j)]

09/04/22 Created by Pukar Karki, IOE 37

The Floyd-Warshall Algorithm

Q)Find the shortest path from source vertex to every other vertices.

1
2

3

6

4

2

11
3

09/04/22 Created by Pukar Karki, IOE 38

The Floyd-Warshall Algorithm

✔ The adjacency matrix can be computed as

1
2

3

6

4

2

11
3

W/Do 1 2 3

1 0 4 11

2 6 0 2

3 3 inf 0

09/04/22 Created by Pukar Karki, IOE 39

The Floyd-Warshall Algorithm

✔ When vertex 1 is an intermediate vertex, D1 can be computed as

D1(1, 1) = 0

D1(1, 2) = min[D0 (1, 2), D0(1, 1) + D0(1, 2)] = min[4, 0+4] = 4

D1(1, 3) = min[D0 (1, 3), D0(1, 1) + D0(1, 3)] = min[11, 0+11] = 11

D1(2, 1) = min[D0 (2, 1), D0(2, 1) + D0(1, 1)] = min[6, 6+0] = 6

D1(2, 2) = min[D0 (2, 2), D0(2, 1) + D0(1, 2)] = min[0, 6 +10] = 0

D1(2, 3) = min[D0 (2, 3), D0(2, 1) + D0(1, 3)] = min[2, 6+11] = 2

D1(3, 1) = min[D0 (3, 1), D0(3, 1) + D0(1, 1)] = min[3, 3 + 0] = 3

D1(3, 2) = min[D0 (3, 2), D0(3, 1) + D0(1, 2)] = min[inf, 3+4] = 7

D1(3, 3) = min[D0 (3, 3), D0(3, 1) + D0(1, 3)] = min[0, 3+11] = 0

1
2

3

6

4

2

11
3

W/Do 1 2 3

1 0 4 11

2 6 0 2

3 3 inf 0

09/04/22 Created by Pukar Karki, IOE 40

The Floyd-Warshall Algorithm

✔ When vertex 2 is an intermediate vertex, D2 can be computed as

D2(1, 1) = 0

D2(1, 2) = min[D1 (1, 2), D1(1, 2) + D1(2, 2)] = min[4, 4+0] = 4

D2(1, 3) = min[D1 (1, 3), D1(1, 2) + D1(2, 3)] = min[11, 4+2] = 6

D2(2, 1) = 6

D2(2, 2) = 0

D2(2, 3) = 2

D2(3, 1) = min[D1 (3, 1), D1(3, 2) + D1(2, 1)] = min[3, 7 + 6] = 3

D2(3, 2) = 7

D2(3, 3) = 0

1
2

3

6

4

2

11
3

D1 1 2 3

1 0 4 11

2 6 0 2

3 3 7 0

09/04/22 Created by Pukar Karki, IOE 41

The Floyd-Warshall Algorithm

✔ When vertex 3 is an intermediate vertex, D3 can be computed as

D3(1, 1) = 0

D3(1, 2) = min[D2 (1, 2), D2(1, 3) + D2(3, 2)] = min[4, 6+7] = 4

D3(1, 3) = 6

D3(2, 1) = min[D2 (2, 1), D2(2, 3) + D2(3, 1)] = min[6, 2 + 3] = 5

D3(2, 2) = 0

D3(2, 3) = 2

D3(3, 1) = 3

D3(3, 2) = 7

D3(3, 3) = 0

1
2

3

6

4

2

11
3

D2 1 2 3

1 0 4 6

2 6 0 2

3 3 7 0

09/04/22 Created by Pukar Karki, IOE 42

The Floyd-Warshall Algorithm

1
2

3

6

4

2

11
3

D3 1 2 3

1 0 4 6

2 5 0 2

3 3 7 0

09/04/22 Created by Pukar Karki, IOE 43

The Floyd-Warshall Algorithm

✔ Let W be a matrix that contains weight of each edges of G, n be
the number of nodes.

09/04/22 Created by Pukar Karki, IOE 44

The Floyd-Warshall Algorithm

09/04/22 Created by Pukar Karki, IOE 45

The Floyd-Warshall Algorithm

✔ The running time of the Floyd-Warshall algorithm is determined by the triply
nested for loops of lines 3–7. Because each execution of line 7 takes O(1)
time, the algorithm runs in time Θ(n3).

✔ The code is tight, with no elaborate data structures, and so the constant
hidden in the notation is small.

✔ Thus, the Floyd-Warshall algorithm is quite practical for even moderate-
sized input graphs.

09/04/22 Created by Pukar Karki, IOE 46

Flow Networks

✔ Imagine a material coursing through a system from a source, where
the material is produced, to a sink, where it is consumed.

✔ The source produces the material at some steady rate, and the sink
consumes the material at the same rate.

✔ The “flow” of the material at any point in the system is intuitively the
rate at which the material moves.

09/04/22 Created by Pukar Karki, IOE 47

Flow Networks

✔ Flow networks can model many problems, including liquids flowing
through pipes, parts through assembly lines, current through electrical
networks, and information through communication networks.

09/04/22 Created by Pukar Karki, IOE 48

Flow Networks

✔ A flow network G = (V, E) is a directed graph in which each
edge (u, v) ∈ E has a non-negative capacity c(u, v) ≥ 0.

✔ We further require that if E contains an edge (u,v), then there is
no edge (v, u) in the reverse direction.

09/04/22 Created by Pukar Karki, IOE 49

Flow Networks

✔ We distinguish two vertices in a flow network: a source s and a
sink t.

09/04/22 Created by Pukar Karki, IOE 50

Flow Networks

✔ Let G = (V, E) be a flow network with a capacity function c.

✔ Let s be the source of the network, and let t be the sink.

✔ A flow in G is a real-valued function f : V x V→R that satisfies
the following two properties:

09/04/22 Created by Pukar Karki, IOE 51

Flow Networks

09/04/22 Created by Pukar Karki, IOE 52

Flow Networks
✔ The capacity constraint simply says that the flow from one vertex to

another must be non-negative and must not exceed the given
capacity.

✔ The flow-conservation property says that the total flow into a vertex
other than the source or sink must equal the total flow out of that
vertex—informally, “flow in equals flow out.”

09/04/22 Created by Pukar Karki, IOE 53

Maximum Flow

✔ In the maximum-flow problem, we are given a flow network
G with source s and sink t, and we wish to find a flow of
maximum value.

09/04/22 Created by Pukar Karki, IOE 54

The Ford-Fulkerson method

✔ Ford-Fulkerson method is used for solving the maximum-flow
problem.

✔ We call it a “method” rather than an “algorithm” because it
encompasses several implementations with differing running
times.

✔ The Ford-Fulkerson method depends on three important ideas
that transcend the method and are relevant to many flow
algorithms and problems:

- residual networks,

- augmenting paths, and

- cuts.

09/04/22 Created by Pukar Karki, IOE 55

The Ford-Fulkerson method

09/04/22 Created by Pukar Karki, IOE 56

The Ford-Fulkerson method
Residual Networks

✔ Intuitively, given a flow network G and a flow f , the residual network
Gf consists of edges with capacities that represent how we can
change the flow on edges of G.

✔ An edge of the flow network can admit an amount of additional flow
equal to the edge’s capacity minus the flow on that edge.

✔ If that value is positive, we place that edge into Gf with a “residual
capacity” of

09/04/22 Created by Pukar Karki, IOE 57

The Ford-Fulkerson method
Residual Networks

✔ As an algorithm manipulates the flow, with the goal of increasing the
total flow, it might need to decrease the flow on a particular edge.

✔ In order to represent a possible decrease of a positive flow f(u, v) on
an edge in G, we place an edge (v, u) into Gf with residual capacity

cf(v, u) = f (u, v) that is, an edge that can admit

 flow in the opposite direction to
 (u, v), at most canceling out

 the flow on (u, v).

09/04/22 Created by Pukar Karki, IOE 58

The Ford-Fulkerson method
Residual Networks

✔ Formally, suppose that we have a flow network G = (V, E) with source
s and sink t.

✔ Let f be a flow in G, and consider a pair of vertices u, v ∈ V.

✔ We define the residual capacity cf(u, v) by

09/04/22 Created by Pukar Karki, IOE 59

The Ford-Fulkerson method
Residual Networks

✔ Given a flow network G = (V, E) and a flow f , the residual network of
G induced by f is Gf = (V, Ef), where

✔ That is, as promised above, each edge of the residual network, or
residual edge, can admit a flow that is greater than 0.

09/04/22 Created by Pukar Karki, IOE 60

The Ford-Fulkerson method
Residual Networks

09/04/22 Created by Pukar Karki, IOE 61

The Ford-Fulkerson method
Residual Networks

09/04/22 Created by Pukar Karki, IOE 62

The Ford-Fulkerson method
Residual Networks

09/04/22 Created by Pukar Karki, IOE 63

The Ford-Fulkerson method
Residual Networks

✔ A flow in a residual network provides a roadmap for adding flow
to the original flow network.

✔ If f is a flow in G and f’ is a flow in the corresponding residual
network Gf, we define f↑f’, the augmentation of flow f by f’, to be
a function from V x V to R, defined by

09/04/22 Created by Pukar Karki, IOE 64

The Ford-Fulkerson method
Augmenting Paths

✔ Given a flow network G = (V, E) and a flow f , an augmenting
path p is a simple path from s to t in the residual network Gf .

✔ By the definition of the residual network, we may increase the
flow on an edge (u, v) of an augmenting path by up to cf(u, v)
without violating the capacity constraint on whichever of (u, v)
and (v, u) is in the original flow network G.

09/04/22 Created by Pukar Karki, IOE 65

The Ford-Fulkerson method
Augmenting Paths

✔ We call the maximum amount by which we can increase the
flow on each edge in an augmenting path p the residual
capacity of p, given by

09/04/22 Created by Pukar Karki, IOE 66

The Ford-Fulkerson method
Cuts of flow networks

✔ The Ford-Fulkerson method repeatedly augments the flow
along augmenting paths until it has found a maximum flow.

✔ The max-flow min-cut theorem, tells us that a flow is maximum
if and only if its residual network contains no augmenting path.

09/04/22 Created by Pukar Karki, IOE 67

The Ford-Fulkerson method
Cuts of flow networks

✔ A cut (S, T) of flow network G = (V, E) is a partition of V into S
and T = V - S such that s ∈ S and t ∈ T.

● A cut (S, T) where S = {s, v1, v2} and T = {v3, v4, t}.
● The capacity is c(S, T) D= 26
● The net flow across (S, T) is f (S, T) = 19

● The capacity of the cut (S, T) is

● The net flow f (S, T) across the
cut (S, T) is defined to be

09/04/22 Created by Pukar Karki, IOE 68

The Ford-Fulkerson method
Cuts of flow networks

✔ A minimum cut of a network is a cut whose capacity is minimum
over all cuts of the network.

09/04/22 Created by Pukar Karki, IOE 69

The Ford-Fulkerson method
Max-flow min-cut theorem

✔ If f is a flow in a flow network G = (V, E) with source s and sink
t, then the following conditions are equivalent:

1. f is a maximum flow in G.

2. The residual network Gf contains no augmenting paths.

3. |f| = c(S, T) for some cut (S, T) of G.

09/04/22 Created by Pukar Karki, IOE 70

The Ford-Fulkerson method
The basic Ford-Fulkerson algorithm

09/04/22 Created by Pukar Karki, IOE 71

The Ford-Fulkerson method
The basic Ford-Fulkerson algorithm

✔ The running time of FORD-FULKERSON depends on how we find the
augmenting path p in line 3.

✔ If we choose it poorly, the algorithm might not even terminate: the value
of the flow will increase with successive augmentations, but it need not
even converge to the maximum flow value.

09/04/22 Created by Pukar Karki, IOE 72

The Ford-Fulkerson method
The basic Ford-Fulkerson algorithm

✔ If we find the augmenting path by using a breadth-first search ,
however, the algorithm runs in polynomial time.

09/04/22 Created by Pukar Karki, IOE 73

The Ford-Fulkerson method
The basic Ford-Fulkerson algorithm

09/04/22 Created by Pukar Karki, IOE 74

The Ford-Fulkerson method
The basic Ford-Fulkerson algorithm

09/04/22 Created by Pukar Karki, IOE 75

The Ford-Fulkerson method
The basic Ford-Fulkerson algorithm

09/04/22 Created by Pukar Karki, IOE 76

The Ford-Fulkerson method
The basic Ford-Fulkerson algorithm

09/04/22 Created by Pukar Karki, IOE 77

The Ford-Fulkerson method
The basic Ford-Fulkerson algorithm

09/04/22 Created by Pukar Karki, IOE 78

The Ford-Fulkerson method
The basic Ford-Fulkerson algorithm

09/04/22 Created by Pukar Karki, IOE 79

The Ford-Fulkerson method
The basic Ford-Fulkerson algorithm

09/04/22 Created by Pukar Karki, IOE 80

The Ford-Fulkerson method
The basic Ford-Fulkerson algorithm

09/04/22 Created by Pukar Karki, IOE 81

The Ford-Fulkerson method
The basic Ford-Fulkerson algorithm

09/04/22 Created by Pukar Karki, IOE 82

The Ford-Fulkerson method
The basic Ford-Fulkerson algorithm

09/04/22 Created by Pukar Karki, IOE 83

The Ford-Fulkerson method
The basic Ford-Fulkerson algorithm

The value of the maximum flow found is 23.

09/04/22 Created by Pukar Karki, IOE 84

Review Questions

1) Run the Bellman-Ford algorithm on the directed graph in the
given figure using vertex 1 as the source. Show the d and π

values after each pass.

09/04/22 Created by Pukar Karki, IOE 85

Review Questions

2) Give a simple example of a directed graph with negative-weight
edges for which Dijkstra’s algorithm produces incorrect answers.

3) Professor Ram has written a program that he claims implements
Dijkstra’s algorithm. The program produces v.d and v.π for each
vertex v ∈ V . Give an O(V + E) time algorithm to check the output
of the professor’s program. It should determine whether the d and
π attributes match those of some shortest-paths tree. You may
assume that all edge weights are non-negative.

09/04/22 Created by Pukar Karki, IOE 86

Review Questions

4. Run the Floyd-Warshall algorithm on the weighted, directed graph in
the given figure. Show the matrix D(k) that results for each iteration of the
outer loop.

09/04/22 Created by Pukar Karki, IOE 87

Review Questions

5. Run the Ford-Fulkerson algorithm to compute the maximum flow
in the following network. Also, comment on the run time of this algorithm.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87

